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SUMMARY

An unsteady incompressible Navier–Stokes solver that uses a dual time stepping method combined with
spatially high-order-accurate finite differences, is developed for large eddy simulation (LES) of turbulent
flows. The present solver uses a primitive variable formulation that is based on the artificial compressibil-
ity method and various convergence–acceleration techniques are incorporated to efficiently simulate
unsteady flows. A localized dynamic subgrid model, which is formulated using the subgrid kinetic energy,
is employed for subgrid turbulence modeling. To evaluate the accuracy and the efficiency of the new
solver, a posteriori tests for various turbulent flows are carried out and the resulting turbulence statistics
are compared with existing experimental and direct numerical simulation (DNS) data. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unsteady simulations of turbulent incompressible flows are time-consuming because of the
elliptic nature of the governing equations. Although unsteady incompressible flows can be
simulated using compressible flow solvers by setting the Mach number very low, this approach
becomes increasingly inefficient with decreasing Mach numbers because of the limitation on
the permissible time step. An alternate approach is to solve the unsteady incompressible
Navier–Stokes equations iteratively at each instant to enforce the incompressibility constraint.
For example, in the artificial compressibility method [1] (and similarly, in the marker and cell
(MAC) method [2]), each physical time step is completed by subiterations, which are necessary
to obtain the pseudo-time steady state solution. Alternatively, in the fractional step method [3],
the pressure Poisson equation used to project the non-solenoidal velocity onto the divergence-
free space, is iteratively solved. Although much more efficient than the compressible solvers in
the incompressible regime, these iterative solvers are still computationally expensive.

The computational expense of carrying out unsteady turbulent flow simulations is also due
to the very large number of grid points that are required to resolve the wide range of length
scales present in the flow. To accurately resolve all these length scales, higher-order difference
schemes [4,5] are desirable for spatial discretization. This requirement further increases the
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expense. Finally, to ensure temporal accuracy, the computational time step has to be less than
the smallest turbulent time scale resolved by the computational grid [6]. All these requirements
make direct numerical simulation (DNS) of unsteady turbulent flows computationally very
demanding.

When DNS is not an option, a method called large eddy simulation (LES) has become a
viable approach to study unsteady turbulent flows at a reduced cost. In LES, all scales larger
than the grid resolution are resolved both spatially and temporally, while the effect of the
scales smaller than the grid is modeled using subgrid models. The accuracy of the LES method,
therefore, depends significantly on the ability of the subgrid model to characterize the effect of
the unresolved motion on the resolved scales. Classically, it was assumed that the small scales
are isotropic (which is true when the entire inertial range is resolved and only the dissipation
scales are modeled) and a simple but universal subgrid model for general application was
sought. The classical algebraic eddy viscosity model by Smagorinsky [7] is a good example.
However, results showed that the algebraic model is accurate only as long as the full inertial
range is resolved, and even then the ‘constant’ of the model had to be tuned for different flows
making the original idea of a universally applicable model questionable. The recent develop-
ment of the dynamic approach originally proposed by Germano et al. [8] whereby the
‘constant’ of the algebraic model is computed as a part of the solution itself resulted in a major
advancement in subgrid modeling. Although studies have shown the superior ability of this
dynamic model, there remains some inherent limitations of this approach that have not yet
been fully resolved. These limitations have been discussed by many researchers [8–11]. In any
event due to the nature of the algebraic model (discussed later), very high resolution is required
for accurate simulations. This significantly limits the ability to conduct LES of high-Reynolds
number flows since the resource requirements (computer time and memory) quickly exceed
availability.

In this study, the capability of an incompressible solver which is computationally efficient
and accurate for unsteady turbulent flow simulations is discussed. The algorithm is based on
a pseudo-compressibility, dual-time stepping scheme [12,13]. Although this methodology has
been around for quite some time, the ability of this scheme for direct and large eddy
simulations has not yet been studied in detail. The present study addresses these issues by
carrying out a systematic study of the capability of this algorithm. Since LES of engineering
flows (i.e. in complex domains) is of eventual interest, the accuracy of the high-order physical
space finite differencing scheme (used in this algorithm) is carefully addressed. In an earlier
DNS study [14] using this solver, the Kolmogorov-scaled energy and dissipation spectra of
decaying isotropic turbulence using the present physical space solver were compared with the
results obtained using a well-established pseudo-spectral code by Rogallo [15]. Very good
agreement over nearly the entire wavenumber space was obtained. Detailed comparisons of the
various statistical quantities (such as the dissipation rate, skewness, etc.) also showed that the
present solver is capable of reproducing statistics very similar to those obtained by the spectral
code. This earlier study established the basic capability of the DNS version of this solver.

The present paper discusses the ability of the present solver for carrying out LES, especially
in high-Reynolds number flows. Since accurate LES implies accurate modeling of the subgrid-
scale effects (especially in high-Reynolds number flows) as a part of the numerical approach,
the present paper also discusses the capability of a localized dynamic subgrid model [11,16]
that has demonstrated an ability to address some of the limitations of the aforementioned
dynamic closure. In particular, the accuracy of the present LES approach in high-Reynolds
number flows when employing reasonable grid resolution (i.e. relatively coarse when compared
with the requirement for the algebraic model), is addressed.
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The present dynamic model solves a transport equation for the subgrid kinetic energy [14,17]
and determines the model coefficients using a localized dynamic procedure. This localized
dynamic kinetic energy model is denoted LDKM for subsequent discussions (a further
description of this model is given in Section 2.2 for completeness). The key advantage of this
one-equation model is that it does not require the equilibrium assumption (i.e. production
equals dissipation) in the small scales (which was required for the algebraic eddy viscosity
subgrid model, e.g. the Smagorinsky model [7]). As a result, this model allows non-negligible
kinetic energy to remain unresolved in the small scales. This ability is particularly important
since it implies that in high-Reynolds number flows, a relatively coarser grid (when compared
with the algebraic model LES) can be used. As demonstrated earlier [18] and in this paper, this
ability is crucial for the development of LES for practical applications.

As in other dynamic models [8], two different filter levels are introduced to dynamically
determine the model coefficients. However, in the LDKM, the similarity between the subgrid-
scale stress tensor and the test-scale Leonard stress tensor is used to evaluate the model
coefficient while in the classical dynamic models (e.g. Germano et al.’s dynamic mode [8]), a
mathematical identity (Germano’s identity) is used to implicitly model the test-scale Leonard
stress tensor in terms of the difference between the model representations at two different filter
levels. The scale similarity invoked in the LDKM is based on experimental observation by Liu
et al. [19] in high-Reynolds number turbulent jets. This feature allows the LDKM to overcome
some of the inherent shortcomings of the earlier dynamic models. For instance. unlike the
Germano-type dynamic models, no mathematical inconsistency [9] occurs in the method and
no ad hoc procedures are required. The numerical instability caused by the ill-conditioning
problem [8] and the prolonged presence of a negative model coefficient [10] has been prevented
in the LDKM by the present dynamic approach. Some details of this dynamic procedure are
given below.

This paper is organized as follows. The governing equations and the dynamic subgrid model
is described in the next section. In Section 3, the numerical method and its accuracy and
capability is described. In Section 4, a posteriori test results from various benchmark turbulent
flow problems are presented and discussed and conclusions are summarized in Section 5.

2. GOVERNING EQUATIONS

In this section, we briefly summarize the LES equations and the dynamic subgrid model
developed for this study.

2.1. Filtered Na6ier–Stokes equations

In LES, all the flow variables are decomposed into a resolved large-scale component
(denoted by an overbar) and an unresolved subgrid-scale (SGS) component by applying a
filtering operation

f( (xi)=
&

f(x %i )G(xi, x %i ) dx %i, (1)

where f represents an arbitrary flow variable, xi denotes the spatial co-ordinates, G is the filter
function and the integral is over the entire domain. Applying the filtering operation (in the
present study, a low-pass filter of the computational mesh which is consistent with finite
volume methods (FVM) [17] is used, hence the characteristic size of this filter is the grid width
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D( ), the following incompressible Navier–Stokes equations for the resolved motion are
obtained:

(ūi

(xi

=0, (2)
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where ūi(xi, t) is the resolved velocity field, t denotes the physical time, p̄ is the resolved
pressure, r is the mass density, dij is the Kronecker delta, and n is the kinematic viscosity.
Hereafter, the constant r will be absorbed into the pressure and, therefore, it will be dropped
from the subsequent equations. The effect of the unresolved small scales appear as the subgrid
scale (SGS) stress tensor

tij=uiuj− ūiūj (4)

in the LES equations and must be modeled. In the present study, this term is parameterized
using the subgrid model described in the following section.

2.2. Localized dynamic subgrid model

Two parameters, a length scale and a velocity scale, need to be defined to develop a subgrid
model. Here, the grid scale is used to characterize the length scale and the velocity scale is
obtained by determining the SGS kinetic energy

kSGS=
1
2

(ukuk− ūkūk), (5)

using the following transport equation [14,17]:

(kSGS

(t
+ ūi

(kSGS

(xi

= −tij

(ūi
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−oSGS+
(

(xi

�
nT

(kSGS

(xi

�
. (6)

Here, the three terms on the right-hand side represent respectively the production, the
dissipation and the diffusion of kSGS. Also, nT denotes the eddy viscosity (defined below).
Using kSGS, the SGS stress tensor tij is modeled as [17,20]

tij= −2CtD( kSGS
1/2 S( ij+

2
3

dijkSGS, (7)

where Ct is an adjustable coefficient to be determined dynamically, D( is the grid size and S( ij

is the resolved-scale strain rate tensor

S( ij=
1
2
�(ūi

(xj

+
(ūj

(xi

�
. (8)

Implicit in Equation (7) is the parameterization of the eddy viscosity nT by using D( as the
characteristic length scale and kSGS as the characteristic velocity scale. Thus,

nT=CtD( kSGS
1/2 . (9)

Equation (6) is closed once the SGS dissipation rate oSGS is modeled. Using simple scaling
arguments, oSGS is usually modeled as [17,20]
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oSGS=Co

kSGS
3/2

D( , (10)

where Co is another coefficient also to be determined dynamically.
The dynamic procedure to evaluate Ct and Co requires using a test filter field that is

constructed from the grid-scale field by applying a test filter characterized by D. (typically [8]
D. =2D( ). A test filter shape that is consistent with the grid filter in form is usually preferred [8].
Some researchers [21,22] have investigated the effect of various filter shapes on the turbulence
statistics. However, the optimal choice (in terms of accuracy and efficiency) of filters for a
particular numerical method has not yet been established. In the present study, the top-hat
filter based on the trapezoidal rule is employed for the test filter (and is implicit in the grid
filter as noted by Schumann [17]). If the application of the test filter on any variable, f, is
denoted by f. , the test-scale Leonard stress tensor is

Lij=�ū iūj − û̄iû̄j. (11)

Liu et al. [19] observed a significant similarity between tij and Lij in their experimental data
obtained in the far-field of a turbulent round jet at reasonably high Reynolds number,
Rel:310 (Rel is the Reynolds number defined based on turbulence intensity and Taylor
microscale l). The experimental data showed that the correlation between these two stress
tensors was quite high. Therefore, they suggested a SGS model based on this scale similarity:
tij=CkLij, where Ck is an adjustable constant (a value of 0.4590.15 was suggested by Liu et
al. [19]). However, this model (which is somewhat similar, except for the test filter size, to the
scale similarity model proposed earlier by Bardina et al. [23]) does not have sufficient
dissipation and therefore cannot be used for LES. In the present study, this scale similarity
assumption is employed not as a subgrid model but rather as a method to obtain the model
coefficients dynamically. This key step allows the LDKM to avoid many of the earlier noted
problems with the classical dynamic closure model.

At the test filter level, a resolved kinetic energy can be defined from the trace of Equation
(11)

ktest=
1
2

(�ū kūk − û̄kû̄k) (12)

(note that ktest=Lkk/2). This energy is similar to kSGS, except that it is produced at the large
scales by −Lij((û̄i/(xj) and is dissipated by

½Ê¾

e= (n+nT)
��(ū i

(xj

(ūi

(xj

−
(û̄i

(xj

(û̄i

(xj

�
, (13)

at the small scales. Here, (n+nT) is used since ktest is fully resolved at the test filter level and
thus must be dissipated by both the eddy viscosity and the molecular viscosity. Since
experiments suggest that tij and Lij are similar, a possible representation for Lij (similar to the
form used for tij but in terms of the test-filtered variables) is

Lij= −2CtD. k test
1/2 S(. ij+

1
3

dijLkk. (14)

In Equation (14) the only unknown is Ct, whereas Equation (7) contains two unknowns tij and
Ct. Thus, Equation (14) can be viewed as an explicit model representation for Ct in terms of
quantities resolved at the test filter level. This system of equations represents five independent
equations in one unknown (i.e. overdetermined), hence the value of Ct can be estimated only
in an approximated manner by applying the least-square method suggested by Lilly [24]
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Ct=
1
2

Lijsij

slmslm

, (15)

where

sij= −D. k test
1/2 S(. ij. (16)

Note that sij is determined completely from quantities at the test filter level.
The above formulation can be contrasted to the classical Germano-type of dynamic closure,

where the mathematical identity in terms of the model representation at the two filter levels
results in the denominator of Equation (15) to be ill-conditioned (i.e. to tend to zero locally
[8]). As a result, some algorithmic adjustments are typically needed (e.g. spatial averaging in a
homogeneous direction [8,25], etc.). The present LDKM approach avoids this problem since
the denominator (16) only contains a well-defined (and non-zero) quantity.

Similarity between the dissipation rates oSGS at the grid filter level and e at the test filter level
is also invoked in the LDKM to obtain the dissipation model coefficient. Thus,

e=Co

k test
3/2

D. . (17)

Since Equation (17) is a single equation with one unknown, Co can be determined easily from

Co=
(n+nT)D. [

�½¹¹Ê¹¹¾
((ū i/(xj)((ūi/(xj)− ((û̄i/(xj)((û̄i/(xj)]

k test
3/2 . (18)

In summary, by assuming a similarity between tij and Lij (which appears reasonable from
experimental data), the LDKM can be formulated without employing any mathematically
inconsistent or ad hoc procedure (the mathematical inconsistency of Germano et al.’s dynamic
formulation [8] has been pointed out earlier by Cabot and Moin [9]). There are some more
positive aspects to this approach. As noted above, the denominators of Equations (15) and (18)
contain resolved quantities and, therefore, the ill-conditioning problem (seen in Germano et
al.’s dynamic formulation [8]) is significantly relieved. The prolonged presence of negative
model coefficient discussed by Lund et al. [10] also can be avoided in the present model since
it uses the SGS kinetic energy (which is never negative). Moreover, the dynamically determined
Co from Equation (18) does not vanish in the limit of high Reynolds number (a phenomenon
that was observed in an earlier dynamic kinetic energy model formulation by Wong [26]) since
n+nT]n.

Analysis of results have shown that the LDKM is Galilean-invariant and satisfies well [27]
the realizability conditions given by Schumann [28]. From a computational standpoint, the
cost of the present dynamic procedure is not significant (about the same as that for the
dynamic model by Germano et al. [8]) due to its simplicity. The additional computational cost
is primarily due to the inclusion of a transport equation for kSGS. The justification for this
extra computational cost is that this approach has the aforementioned advantage over
algebraic models since the equilibrium assumption is not required. Furthermore, kSGS provides
a more accurate estimate for the SGS velocity scale.

The results reported in this paper will demonstrate the ability of the LDKM approach when
applied to high-Reynolds number flows using relatively coarse grids. Interestingly, the superior
ability of the LDKM model in coarse grid LES was also recently demonstrated independently
by Fureby et al. [27] in their comparative study of various SGS models.
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2.3. Transformation of go6erning eqations

Following conventional methods [29], the Cartesian space (x, y, z) is mapped onto a
generalized curvilinear space (j, h, z) and the governing equations, (2) and (3), are rewritten as

(
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where J is the Jacobian of the transformation, and U, V and W are respectively the
contravariant velocities along the three spatial directions in the computational domain,

U=jxū+jy6̄+jzw̄,

V=hxū+hy6̄+hzw̄,

W=zxū+zy6̄+zzw̄. (21)

q= [ū, 6̄, w̄ ]T is the velocity vector and the vectors E, F and G contain the pressure and viscous
terms
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Ep=
1
J

[jxp̄, jyp̄, jzp̄ ]T,

Fp=
1
J
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Here, the velocity gradients are written as ūj=(ū/(j, etc., and the metrics of the transforma-
tion are defined by jx=(j/(x, etc.

3. NUMERICAL METHOD

The numerical method developed in this study for LES of incompressible turbulent flows is
summarized in this section. The key features of the spatial discretization, the dual time
stepping and the pseudo-time convergence acceleration techniques are emphasized.

3.1. Spatial discretization

In order to obtain adequate accuracy for turbulent flow simulations without losing appli-
cability to complex geometry and simplicity of the scheme, Rai and Moin [4] suggested a
high-order-accurate, upwind-biased finite difference method. Their approach used a non-
conservative form of the unsteady, incompressible Navier–Stokes equations, (2) and (3).
Hence, it is appropriate only for simulations of flow fields without discontinuity. The present
study is limited to such flows and, therefore, a similar methodology is adopted here.

Similar to Rai and Moin [4], the convective terms are approximated using fifth-order-
accurate, upwind-biased finite differences with a seven-point stencil. For example, the first
term in the momentum equation, (U/J)qj, is evaluated as�U

J
qj

�
i, j,k

=
(U/J)i, j,k

120
(−6qi+2, j,k+60qi+1, j,k+40qi, j,k−120qi−1, j,k+30qi−2, j,k−4qi−3, j,k) (25)

if Ui,j,k\0, and�U
J

qj

�
i, j,k

=
(U/J)i, j,k

120
(4qi+3, j,k−30qi+2, j,k+120qi+1, j,k−40qi, j,k−60qi−1, j,k+6qi−2, j,k)

(26)

if Ui,j,kB0. The remaining convective terms are evaluated in a similar manner.
The viscous terms are computed using central differences. By applying the fourth-order-

accurate, half-points differencing, the first viscous term in the u momentum equation, (cūj)j,
where c=2(n+nT)jx/J, is discretized as

[(cūj)j ]i, j,k=
1

24
[− (cūj)i+3/2, j,k+27(cūj)i+1/2, j,k−27(cūj)i−1/2, j,k+ (cūj)i−3/2, j,k ]. (27)

Here, ūj, which is defined at the half-points, is computed using the same fourth-order-accurate
finite difference given as

(ūj)i+1/2, j,k=
1

24
(− ūi+2, j,k+27ūi+1, j,k−27ūi, j,k+ ūi−1, j,k). (28)

ci+1/2, j,k is interpolated using the information on the same stencil used to evaluated (ūj)i+1/2, j,k

so as to retain high-order accuracy. Thus, the discretization of the viscous terms uses seven
grid points and, therefore, the viscous terms are approximated to sixth-order accuracy on
uniform grids.

Unlike central difference, all upwind and upwind-biased differences have truncation error
terms that are dissipative in nature. In fact, some (low-order) upwind (biased) schemes are
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known to be highly dissipative. This can overwhelm the physical dissipation of turbulence and,
therefore, needs to be carefully evaluated.

This issue has been addressed in the present study. Figure 1(a) shows the time variation of
the turbulent kinetic energy in decaying isotropic turbulence (the description of this flow field
will be given later in Section 4.1). Results obtained on a 483 grid resolution using fifth-order-
accurate upwind-biased finite differences (implemented with and without the LDKM) are
shown together with the experimental data. It can be observed that the numerical dissipation
of the finite difference scheme is lower than the turbulent dissipation. This is an essential
requirement for a turbulence simulation code. As shown, the LES data agree with experimental
data only when the SGS model is turned on. This demonstrates the need for and the capability
of the SGS model. For comparison, the results without the SGS model obtained using a
well-known pseudo-spectral code [15] with a ‘2/3 dealiasing rule’ is also plotted (obtained
directly from Figure 1 in Carati et al. [30]). Note that the simulation results obtained without
a subgrid model should not be considered as DNS since 483 grid resolution is too coarse to
resolve all the turbulence scales. For example, for this particular case, at least 3843 grid
resolution is required for DNS [16]. The present finite difference method appears to be less
dissipative than the spectral method. This is somewhat surprising since the spectral methods
are known to be the least dissipative methods available for turbulence simulation. However,
this may be due to some small deviations in the initial energy distribution (in the spectral
space) between the current physical implementation and Carati et al.’s initialization in spectral
space. Nevertheless, it can be concluded that the dissipation of the present finite different
method is at least comparable with that of the spectral scheme and, therefore, is acceptable for
turbulence flow simulations.

Figure 1(b) shows the unscaled energy spectra at two instants in time, t*=4.98 and
t*=8.69 (here, t* denotes the dimensionless time as defined later in Section 4.1) obtained in
decaying isotropic turbulence with and without the LDKM. Without the model, energy builds
up at the high wavenumber end by t*=4.98 and as time evolves, the prediction without the
model worsens at all wavenumbers. This result again suggests that the present algorithm has
the requisite properties for use in DNS and LES.

Note that if a non-staggered grid is used, and the velocity derivatives in the continuity
equation and the pressure derivatives in the momentum equation are central-differenced,
velocity and pressure are decoupled. This decoupling generates undesirable grid-scale (odd–
even) oscillations in the pressure field. Some higher-order artificial dissipation terms are
typically needed to eliminate the pressure oscillations. However, artificial dissipation terms
need to be avoided in turbulence simulations since they may contaminate the simulated flow
field. On the other hand, a staggered grid method originally proposed by Harlow and Welch
[31] can be used to avoid the pressure oscillations. However, this method requires more care
when used with non-rectangular geometry and non-uniform grids. It also requires some special
treatment at boundaries. When a non-staggered grid is used, the pressure oscillations can be
eliminated by using special interpolation techniques, such as momentum interpolation [32] and
elliptic-corrected linear interpolation [33] techniques. Strikwerda [34] used the central differ-
ence scheme with the addition of regularizing terms for the pressure gradient and divergence
operators (hence, it is called the regularized central difference). The regularizing terms ensure
proper coupling between the pressure and the velocity fields. In this scheme, the pressure
derivatives are approximated as

(p
(x
#dxp−aDx

2dx−dx+
2 p, (29)
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Figure 1. (a) Decay of resolved turbulent kinetic energy and (b) energy spectra in decaying isotropic turbulence.
Spectral code results of Carati et al. [30] (no model case) and experimental data of Comte-Bellot and Corsin [47] are

also plotted in (a).
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and the velocity derivatives in the continuity equation are approximated as

(u
(x
#dxu−aDx

2dx+dx−
2 u, (30)

where a is a non-zero constant and dx, dx+ and dx− are the central, forward and backward
difference operators respectively. For a=1

6, Equations (29) and (30) are third-order accurate.
In the present study, a similar scheme is adopted. However, to prevent the degradation of
accuracy, fifth-order-accurate approximations are used. For instance,��jxp̄
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Note that the regularized central difference scheme is a variant of the central difference scheme
and, hence, the biasing of the scheme does not depend on the direction of the local
contravariant velocity.

The accuracy and the effect of the non-symmetric regularizing terms on the turbulence
statistics have been examined by simulating decaying isotropic turbulence and comparing the
results with those obtained using the following fourth-order-accurate (non-regular) central
differences��jxp̄
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Figure 2 shows the comparison for the time evolution of the turbulent kinetic energy (Figure
2(a)) and unscaled energy spectra (Figure 2(b)). As shown, almost identical results have been
obtained using both types of central difference schemes. This result demonstrates the accuracy
of the regularized central differences and the negligible effect of the scheme bias on the
turbulence statistics.

3.2. Dual time stepping

The major difference between incompressible and compressible Navier–Stokes formulations
is the lack of a time derivative term in the continuity equation in the incompressible
formulation. Therefore, satisfying the mass conservation equation is the primary issue in
solving the incompressible equations. Physically incompressible flow is characterized by the
elliptic behavior of the (infinitely fast) pressure waves. Since the pressure field is part of the
solution, various primitive variable formulations, such as the marker and cell (MAC) method
[31], the fractional step (or the projection) method [35], and the artificial compressibility
method [36], have been developed. However, to the authors’ best knowledge no method has
been proven superior for general flow problems.
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Figure 2. Comparison between the regularized central differences and the non-regular central differences using the
decaying isotropic turbulence results. (a) Decay of resolved turbulent kinetic energy and (b) energy spectra.

Experimental data of Comte-Bellot and Corsin [47] are also plotted in (a).
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In the present study, the artificial compressibility method (which was originally suggested by
Chorin [36]) is adopted. The main advantage of this approach is that by introducing artificial
unsteady terms into the continuity equation, efficient solution algorithms developed for
time-dependent compressible flows can be utilized to compute incompressible flows. In this
formulation, the continuity equation is modified by adding a pseudo-time derivative of the
pressure term, which results in hyperbolic–parabolic time-dependent equations together with
the unsteady momentum equations,

(p
(t

= −b2J
� (
(j

�U
J
�

+
(

(h

�V
J
�

+
(

(z

�W
J
�n

. (35)

Here, b is a prescribed parameter that represents an artificial speed of sound and reduces the
stiffness of the equations, and t is the pseudo-time variable which is not related to the physical
time t. The choice of b is crucial in determining convergence and stability properties of the
numerical scheme. Since b has the dimension of a speed, it cannot be a universal constant. For
instance, if the non-dimensionalized governing equations are employed, b is non-dimensional-
ized by a reference velocity. Therefore, the optimal b will depend on the choice of the reference
velocity. Some researchers [37] chose b2 to be slightly larger than ū2+ 6̄2+w̄2 as an optimal
choice. However, in general, the superiority of this choice of b over a constant b has not yet
been proven. McHugh and Ramshaw [38] found that for a large time step the fastest
convergence is obtained by using the conventional value of (b2� ū2+ 6̄2+w̄2). However, in
contrast, the fastest convergence for a small time step is obtained by letting b be much larger
than the conventional value. Based on this observation, they proposed a simple analytical
expression for b as function of the time step. In the present study, both a constant b and a
variable b, i.e. b2=C(ū2+ 6̄2+w̄2) (where C is a constant of order unity) have been
evaluated. It was concluded that for most of the problems studied here, a constant b provided
better convergence. Based on the numerical experiments, Marx [39] concluded similarly that
optimal convergence rate is obtained when b2 is estimated from the maximum of C(ū2+ 6̄2+
w̄2) (i.e. b is constant) in the flow fields. He also estimated C to be close to 3.

Figure 3 shows a typical example of the pseudo-time convergence for one physical time step
advance for various values of b. The decaying isotropic turbulence is solved on a 483 grid
resolution using a two-level multigrid, CFL=2, and a physical time step equal to 0.05. For
this test case, the choice of b2:20 gives optimum performance. The maximum of (ū2+ 6̄2+
w̄2) is about 3 in the initial flow field. Therefore, optimal C is greater than 6, which is much
larger than the value suggested by Marx [39]. The reason for the larger value of optimal C is
the fact that relatively small time steps are used for the present numerical experiment to ensure
time accuracy.

Pseudo-time velocity derivatives are also added to the momentum equations [1] to obtain the
artificial compressibility form of the equations. Thus,

(q
(t

= −
(q
(t

−R*(q)= −R(q), (36)

where R* represents the residual in the momentum equations, which includes convective and
viscous terms. In this formulation, the governing equations are marched in the pseudo-time
(i.e. subiterated) until the divergence-free flow field is obtained. Therefore, artificial compress-
ibility does not corrupt the physical time solution as long as the pseudo-time solution
converges to a steady state at each physical time level.

The integration in the pseudo-time is carried out by a five-stage Runge–Kutta time stepping
scheme. If m is the index associated with pseudo-time, this scheme can be written in the form
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q (0)=qm,

q (k)=q (0)−akDtR(q (k−1)), k=1 . . . 5,

qm+1=q (5). (37)

Here, the coefficients are chosen as a1=0.059, a2=0.145, a3=0.273, a4=0.5 and a5=1.0,
which are considered appropriate for the upwind scheme [13].

The physical time derivatives in the momentum equations are computed using a second-
order backward difference that results in an implicit scheme,

(q
(t

= −
3qn+1−4qn+qn−1

2Dt
−R*(qn+1)= −R(qn+1), (38)

where the superscript n denotes the physical time level. This backward differencing scheme is
strongly stable and dissipative and thus it is nearly insensitive to the stiffness of the problem.
This characteristic of the scheme can enhance the applicability of the scheme to any stiff
problem. However, at the same time, it can also degrade the time accuracy of the scheme.
Therefore, the time step must be chosen carefully to ensure the adequate time accuracy.
Instead of using this type of dissipative time integration, one may use the Crank–Nicolson
scheme which is non-dissipative. Only dispersion errors are significant in such a scheme and
these errors usually grow with increasing time step. Therefore, the time step is limited by
stability considerations and furthermore, this scheme is very sensitive to the type of flow field.
Marx [39] tested both these schemes and concluded that the backward differencing scheme
provided a much better performance for unsteady flows driven by fast transient but the
Crank–Nicolson scheme was better for a free vortex shedding problem. Based on this
observation, he proposed an implicit Runge–Kutta scheme that performed well for both test
problems. This implicit Runge–Kutta scheme typically requires more subiterations for the

Figure 3. Pseudo-time convergence history for variation of b during one physical time step advance in decaying
isotropic turbulence simulation.
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same time step to reach the pseudo-time steady state than the backward differencing scheme.
Furthermore, the applicability of this scheme to unsteady turbulent flows has not yet been
established. Therefore, the present approach employs the backward differencing scheme and
the time step is chosen small enough so as to ensure that time accuracy is not compromised.

3.3. Con6ergence acceleration techniques

To accelerate the convergence in pseudo-time marching at each physical time step, efficient
acceleration techniques developed for explicit steady state solvers, such as local time stepping,
residual smoothing and multigrid, are employed. Local time stepping involves using the locally
maximum allowable time step. The local time step for viscous flow can be computed as [40]

Dt=CFL
1

lj+lh+lz+2(n+nT)J2(Sj
2 +Sh

2 +Sz
2)

, (39)

where CFL is the Courant–Friedrichs–Lewy number, lj, lh and lz are the spectral radii in the
j-, h- and z-directions, given as

lj= �U �+b(jx
2 +jy

2+j z
2)1/2,

lh= �V �+b(hx
2 +hy

2+h z
2)1/2,

lz= �W �+b(zx
2 +zy

2+z z
2)1/2, (40)

where Sj
2 =xj

2 +yj
2 +zj

2, etc. Note that the local time step Dt must be less than the physical
time step Dt to make the scheme stable.

The stability limit of the basic scheme can be extended by employing residual smoothing
[41]. In three dimensions, an implicit residual smoothing is carried out in the following form

(1−exdx
2)(1−eydy

2)(1−ezd z
2)R0 =R, (41)

where ex, ey and ez are smoothing coefficients and dx
2, dy

2 and d z
2 are central difference

operators in the x-, y- and z-directions. R and R0 are the residuals before and after smoothing.
Thus, each residual is replaced by an average of itself and the neighboring residuals. In most
cases, with residual smoothing, a CFL of 5 was possible for the pseudo-time iteration.

Convergence can also be further accelerated by incorporating the full approximation storage
(FAS) scheme based multigrid method as proposed by Brandt [42] and further developed by
Jameson [41]. The basic idea is to solve the governing equations on a sequence of successively
coarser grids to speed up the propagation of the fine grid corrections. This has two advantages.
First, the computational effort per time step is reduced on a coarser grid. Second, the use of
coarser grids tracks the evolution on a larger scale, with the consequence that global
equilibrium can be more rapidly attained. In the case of an explicit time stepping scheme, this
manifests itself as successively larger time steps as the solution procedure moves to coarser
grids without violating the stability limit. Auxiliary coarser grids are introduced by doubling
the grid spacing. The FAS multigrid method is not illustrated here for brevity, since the
detailed description of the method can be found in numerous published works [41,42].

It is worth noting that the success of the multigrid method is critically dependent upon the
choice of the restriction and prolongation operators (i.e. information transfers between grid
levels). If the errors due to either the restriction or the prolongation procedure are significant,
then the convergence will be seriously impaired. In general. the prolongation operator does not
have to be the exact inverse of the restriction operator. Moreover, the restriction operator for
the solution and for the residual need not be the same. In the present study, point-to-point
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Figure 4. Pseudo-time convergence history for variation of multigrid levels during one physical time step advance in
decaying isotropic turbulence simulation.

injection [13] is used for restricting the solution while a volume-weighted average over the
neighboring 27 points is used for residual restriction. The corrections are prolonged back to
the finer grid by bilinear interpolation.

The treatment of the boundary conditions on the coarser grids also influences the multigrid
convergence. In the present study, the boundary conditions are imposed in the same way on
each grid and updated at every Runge–Kutta stage. The turbulent eddy viscosity on coarse
grids is evaluated by injecting the SGS turbulent kinetic energy and the dynamically deter-
mined model coefficients from the fine grid instead of solving the transport equation on the
coarse grids. Earlier, results obtained using this approach was compared with results obtained
when the SGS kinetic energy was directly computed on each coarse grid. Comparison of the
two methods showed no observable differences. Therefore, for computational expediency, the
former method was employed for the simulations reported here. It is likely that the latter
method may be needed in more complex flow problems. This requirement if needed can be
easily incorporated in the present method.

The pseudo-time convergence history during one physical time advance for the four different
multigrid level cases is compared in Figure 4. Again, decaying isotropic turbulence is solved on
a 483 grid resolution using b2=10, CFL=2 and a physical time step equal to 0.05. As shown,
increasing the number of multigrid levels from 1 to 3 shows an improvement in convergence.
However, beyond three multigrid levels, the convergence saturates earlier. This earlier conver-
gence saturation seems to be related to the fact that 63 and 123 grid resolutions are too coarse
to provide the accurate corrections for a very small velocity change.

In practice, a solution is considered converged if the root-mean-square of pressure and
velocity changes decrease less than 10−6 since, in most cases, further iterations to reduce these
quantities do not noticeably change the solution. Both the eddy viscosity and the model
coefficients are computed at each pseudo-time step. Usually, the model coefficients adjust
themselves quickly and remain almost constant during pseudo-time iterations.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 983–1017 (1999)



LARGE EDDY SIMULATION OF TURBULENT FLOWS 999

The efficiency of the present numerical method has been evaluated by simulating the
lid-driven cavity (recirculating) flow (the detailed description of the flow field is given in
Section 4.6) on 323 grid, and comparing the CPU and memory usage with data obtained using
other numerical methods for the same test case. Existing schemes include two staggered grid
methods, one explicit and one fully implicit, and one non-staggered grid method by Zang et al.
[3], which employs a semi-implicit fractional step approach. The comparison is summarized
in Table I for the CPU time (in ms) per grid point per time step and the number of three-
dimensional variables defined per grid point. All three existing schemes’ data have been
adopted from Zang et al.’s paper [3] and their CPU time has been measured on a Cray Y-MP
8/864 supercomputer. However, the present computation was carried out on a single processor
SGI Power Challenge (75 MHz). Therefore, the CPU time cannot be directly compared.
Rather, an approximate comparison based on the reported benchmark is carried out. Saini and
Bailey [43] performed a benchmark test of a simplified multigrid kernel, which solves a
three-dimensional Poisson partial differential equation (PDE). They obtained the speed ratio
of SGI Power Challenge (90 MHz) with respect to Cray Y-MP equals to 0.45 when both ran
on eight processors. Using this result, we calibrate/rescale the present study’s result and
determine a CPU time of 100 ms for the present solver (as shown in Table I) on 75 MHz Power
Challenge is equivalent to 38 ms on a Cray Y-MP, which compares very well to the Y-MP CPU
time obtained in the fractional step method of Zang et al. [3].

For the above comparison, the time step was chosen based on the CFL condition to best
match the time step of Zang et al. [3]. In the present case, typically two to three subiterations
were required to complete one physical time step after the non-physical initialization effects
were washed out. The fractional step method employs a semi-implicit scheme and, therefore,
the admissible time step is restricted by stability restriction. In contrast, the present (fully
implicit) time integration scheme can use a larger time step than dictated by the CFL condition
(since the time step of the present scheme is only restricted by accuracy considerations).
Furthermore, as observed by Marx [39] and confirmed by the present authors (not shown), the
number of subiterations needed to achieve the pseudo-steady state is insensitive to the
(physical) time step size. Hence, if the comparison is made in terms of the absolute computa-
tional cost to achieve a time-accurate solution over a fixed physical time period, the present
solver may be relatively more efficient.

The total number of the three-dimensional variables per grid point, as shown in the table,
can also be significantly reduced in the non-staggered grid methods in comparison with the
staggered grid methods. Thus, the present algorithm appears to be computationally efficient
(both in terms of memory requirement and CPU time needed) when compared with alternate
methods reported in the literature.

Table I. Comparison of CPU time per grid point per time step and number of three-dimensional
variables per grid point between the present method and existing incompressible methods

Number ofCPU time (ms)
variables

Explicit staggered grid [3] 60 (Y-MP 8/864) 103
Implicit staggered grid [3] 94110 (Y-MP 8/864)

5128 (Y-MP 8/864)Fractional step [3]
Artificial comp. (present) 100 (SGI Power Challenge 75 MHz) 36
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4. RESULTS AND DISCUSSIONS

To validate the LES solver developed in this study, we have implemented a posteriori tests of
decaying (Section 4.1), forced (Section 4.2) and rotating (Section 4.3) isotropic turbulent flows,
temporally evolving turbulent mixing layers (Section 4.4), turbulent plane Couette flows
(Section 4.5) and turbulent recirculating flows (Section 4.6). These test flows were chosen to
evaluate the present method under various conditions of increasing complexity. Comparisons
with experimental data and DNS results (wherever available) are carried out to demonstrate
the capability of the code. Results of some of the present LES are also compared with LES
results (wherever available) obtained using other subgrid models [30,44].

Before presenting the results, it is worthwhile to discuss grid independence studies that are
required to establish the accuracy of the solution. In conventional steady state approaches,
grid-independent studies primarily address whether geometry-dependent large-scale motions
are properly resolved. However, in LES, full resolution of these large-scale motions is a
prerequisite, by definition. Therefore, grid convergence studies of LES need to be interpreted
differently from conventional steady state studies. LES results obtained using different grid
resolutions resolve different amounts of turbulent kinetic energy and all these results are
equally accurate as long as the grid employed is larger than the grid required to resolve the
relevant large scales. This is demonstrated in the following section where three different grid
resolution LES of decaying isotropic turbulence show different results but match well with
experimental data (when they are also resolved on the same grid).

Most eddy viscosity based SGS models are known to approximate correctly the isotropic
components of the subgrid stress tensor (which determine the rate of energy dissipation).
However, most models correlate poorly with the anisotropic components of the subgrid-scale
stress tensor [14,19]. Therefore, anisotropic components of the subgrid stress tensor should be
resolved explicitly by the grid resolution. For flows without mean shear such as isotropic
turbulence (which can be fully characterized by the rate of energy dissipation), the grid
resolution requirement depends only on the quality of the employed SGS model. If a more
accurate and physically accurate SGS model is employed, a coarser grid can be used. As is
demonstrated in the following section, the LDKM works reasonably well in isotropic turbu-
lence up to the grid resolution, where almost half of turbulent kinetic energy remains
unresolved. However, for wall-bounded flows where a wide range of anisotropic small scales
are generated near walls, the adequate resolution is determined by the size of these anisotropic
scales. Baggett et al. [45] studied this issue and provided an estimate for the near wall layer
resolution requirement. In this study, the required resolution was determined in a posteriori
manner by checking the accuracy of the simulated wall layer. These issues are discussed later.
Unless otherwise noted, most of the results presented here were obtained using the minimum
number of grid points required to achieve accurate results.

4.1. Decaying isotropic turbulence

In turbulent flow simulations, it is very difficult to measure the time accuracy from
instantaneous flow data, since two different turbulent flows with a small discrepancy in the
initial state (e.g. the initial random seed) will evolve in a totally different manner even though
both of them may represent evolution of realistic turbulence. Statistical measure of the
turbulence evolution may be the only feasible approach to evaluate time accuracy of turbulent
simulations [46]. A flow where time accuracy can be evaluated from the results is decaying
isotropic turbulence. Therefore, the decaying isotropic turbulence experiment of Comte-Bellot
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and Corsin [47] is simulated here. In the experiment, measurements of the energy spectra were
carried out at three locations downstream of the grid (which generated the turbulence in the
wind tunnel). The spatial evolution of turbulence in this flow can be simulated using a
temporal simulation (provided Taylor’s frozen turbulence hypothesis is valid, which is the case
here). Good agreement of the predicted temporal energy decay rate with the measured spatial
energy decay rate can be used to prove the time accuracy of the solver as well as the ability
of the SGS model to represent accurately the effect of the unresolved scales. Therefore, this
flow has been an ideal test problem that has been utilized by many researchers [21,25,30,48] to
evaluate both the numerical scheme and SGS closure models.

Decaying isotropic turbulence inside a cubical box moving with the mean flow velocity is
simulated here. The size of the box is chosen to be greater than the integral length scale of the
measured real turbulence. The statistical properties of turbulence inside the box are believed to
be realistic even after applying periodic boundary conditions for numerical implementation.
All experimental data are non-dimensionalized by the reference length scale 10M/2p (where
M=5.08 cm is the mesh size of the grid) and by a reference time scale 0.1 s (chosen for
computational convenience). Using this non-dimensionalization, the three locations where the
experimental data were measured correspond to the three dimensionless time levels t*=2.13,
4.98 and 8.69 respectively. At the first measuring station, the Reynolds number based on the
Taylor microscale Rel and the integral scale Rel were respectively 71.6 and 187.9 (these values
decreased to 60.7 and 135.7 respectively at the last measuring station).

The initial velocity field (primarily the amplitudes of the velocity Fourier modes) is chosen
to match the three-dimensional energy spectrum at the first experimental station. The phases
of Fourier modes are chosen to be random so that the initial velocity field satisfy Gaussian
statistics. The initial pressure is assumed to be uniform throughout the flow field and the initial
SGS kinetic energy is estimated by assuming similarity between the SGS kinetic energy and the
resolved-scale kinetic energy at the test filter level. Thus, at t*=2.13, we chose

kSGS:
Ck

2
(�ū kūk − û̄kû̄k), (42)

where the constant Ck is determined by matching the total amount of kSGS with the exact
amount of the kinetic energy remaining above the cut-off wavenumber at the first location in
the experiment. Because the initial flow field is not real turbulence, realistic energy decay
occurs only after some adjustment period, which takes a few time steps in the actual
simulation.

Figure 5 shows the decay of the resolved turbulent kinetic energy computed using the
present solver using three grid resolutions, 483, 323 and 243. The results are compared with the
experimental data of Comte-Bellot and Corsin [47]. The predictions of LES are in good
agreement with the experiment. Even when 243 grid is employed (which implies that a
significant amount, nearly half, of the subgrid kinetic energy remains unresolved), the present
LDKM model LES gives reasonably good agreement.

As is well known, the turbulent kinetic energy undergoes a power law decay, i.e. E� (t*)a,
in the asymptotic self-similar regime. Table II shows this decay exponent a which is obtained
from a least-square fit to each data. The results predicted by the other models (DSM, DLM(k)
and DLM(S)) are also shown in the table as given in Carati et al. [30]. Here, DSM, DLM(k),
and DLM(S) denote respectively the dynamic Smagorinsky model by Germano et al. [8], the
dynamic localization model by Ghosal et al. [48], and the stochastic dynamic localization
model by Carati et al. [30]. These results confirm the agreement between the LES and the
experiment. More importantly, the present results at all three grid resolutions used show
consistency in predicting the energy decay accurately.
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Figure 5. Decay of turbulent kinetic energy in isotropic turbulence, resolved by LES with three different grid
resolutions. Experimental data of Comte-Bellot and Corsin [47] are also plotted.

4.2. Forced isotropic turbulence

A statistically stationary isotropic turbulence is simulated using a 323 grid resolution. The
results are compared with existing high resolution DNS data by Vincent and Meneguzzi [49]
and Jimenez et al. [50] obtained at Rel:150 and Rel:170 respectively. A statistically
stationary turbulent field is obtained by forcing the large scales as done by Kerr [51] by
keeping the initial value of all Fourier modes with wavenumber components equal to 1 fixed.
The initial condition is obtained by generating a random realization of the energy spectrum
[52].

E(k)=C
k4

1+ (k/k0)5/3+4 , (43)

where k is a wavenumber, k0=1 and C is a constant that normalizes the initial total energy
to be 0.5.

Table II. Decay exponent a of the power law decay E�(t*)r in isotropic
turbulence

483Grid resolution 323 243

Experiment −1.20 −1.16 −1.12
−1.09−1.13−1.17LDKM

−1.27DSM
−1.28DLM(k)

DLM(S) −1.17

Experimental data are computed from the energy spectra given by Comte-Bellot and
Corsin [47]. Results of DSM, DLM(k) and DLM(S) are adopted from Carati et al. [30].
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Table III. Higher-order moments of the u velocity component in forced
isotropic turbulence

S4 S6

2.805123 DNS (Rel:170) 12.5
2.78323 LDKM (Rel:260) 11.9
2.80 12.1323 LDKM (Rel:80)
3.0 15.0Gaussian

The nth-order moments are denoted by Sn. Results of the 5123 DNS of Jimenez et al.
[50] are also included.

Two different flow conditions were simulated. In one case, Rel:260, Rel:2400 and
te:3.7, while for the second case, Rel:80, Rel:220 and te:4. Here Rel, Rel and te,
respectively denote the Taylor microscale Reynolds number, the integral scale Reynolds
number and the large eddy turnover time (defined by the ratio between the integral scale and
the turbulence intensity). The precise (but well known) definitions of these parameters in terms
of the wavenumber and the energy dissipation rate are given elsewhere [52]. The simulations
were carried out for 27 and 25 large eddy turnover times respectively. To ensure statistical
independence, 20 instantaneous fields are used for statistical analysis for both cases with the
time interval between successive fields larger than (or at least the same as) one large eddy
turnover time.

Figure 6(a) shows the probability distribution of velocity differences, du(r)= ū(x+r)−
ū(x), for various values of length scale r (note that all values of r used here are comparable
with the inertial range scales). Here du is normalized so that s2=du2�=1 (here ‘� ’ denotes
ensemble averaging). The LES results (using the LDKM at Rel:260) clearly show that the
distribution changes from a non-Gaussian (which has tails) to a Gaussian, as r increases. The
same behavior was observed in the DNS database of Vincent and Meneguzzi [49]. In addition
to this agreement, the LES accurately predicts the probability of each bin. Figure 6(b) shows
that there is a good agreement between the DNS and LES distributions for r=0.39 obtained,
except for deviation in the tail regions. However, as is well known, the tails of the non-
Gaussian distribution develop mainly due to small-scale fluctuations. Therefore, the deviation
between the LES and the DNS results in the tails is somewhat natural since in LES, the small
scales are not resolved, and even the resolved portion of small scales lies under strong influence
of the top-hat filter implicitly adopted in the present code.

The statistics of velocity (which are the property of the large scales and mostly resolved in
LES) are also investigated. We compute the nth-order moments of the u velocity component
distribution using

Sn=
�
un

�
u2

n/2
. (44)

The results of these calculations are summarized in Table III. The results of the 5123 DNS
(Rel:170) are obtained from the paper by Jimenez et al. [50]. As shown in the table. the
velocity statistics predicted by the LES agree well with the DNS results.

4.3. Rotating isotropic turbulence

The principal effect of system rotation on isotropic turbulence is to alter the non-linear
interactions among turbulence scales. The system rotation inhibits energy transfer from large
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Figure 6. Probability distribution of normalized velocity difference for (a) five different scales (r) and (b) r=0.39
predicted by LES of forced isotropic turbulence. High resolution DNS results of Vincent and Meneguzzi [49] are also

plotted in (b).
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to small scales and thus leads to a reduction in turbulence dissipation and an associated
decrease in the decay rate of turbulence energy. This particular feature is a good test to address
the capability of the LDKM approach. In this study, we simulate the experiment of Jacquin
et al. [53]. The effect of system rotation on the large-scale velocity field can be easily included
by adding a Coriolis term to the right-hand side of (3): 2eij3Vūj, where eijk is Levi–Civita’s
alternating tensor. The resulting equations represent the governing equations of large-scale
motions in a reference frame rotating with constant angular velocity V about the z-axis. Four
different cases, V=0, 15.7, 31.4 and 62.8 rad s−1, were simulated using the 323 grid resolution.

The initial field is the same as the one used earlier for the decaying isotropic turbulence
simulations described in Section 4.1. The total energy and the time scale of this initial state
have been scaled to match those of the experiment of Jacquin et al. [53] at the imaginary origin
of realistic turbulence where the grid wakes are believed to completely mix together. The
imaginary origin is assumed to be x/M=2.6 (M denotes the mesh size of the grid) as given by
the authors for V=0 rad s−1 and M=1.5 cm.

In Figure 7, the decay of the resolved-scale turbulent kinetic energy, for various rotation
rates are compared to the experimental data of Jacquin et al. [53]. These results clearly
demonstrate the principal effect of system rotation on isotropic turbulence, i.e. increasing
rotation rate decreases the decay rate of turbulent kinetic energy. As shown, LES predictions
of this phenomenon are in good agreement with the experimental data.

4.4. Turbulent mixing layers

Vreman et al. [54] simulated a temporal, weakly compressible (Mach=0.2) mixing layer in
a cubic domain using 1923 grid resolution. In their study, the length of the domain was 29.5dv

0

(where dv
0 denotes the initial vorticity thickness), which corresponds to four times the

wavelength of the most unstable mode as predicted by linear stability theory at Mach=0.2.
Periodic boundary conditions are imposed in the streamwise (x) and spanwise (z) directions,

Figure 7. Decay of resolved turbulent kinetic energy predicted by LES of rotating isotropic turbulence for various
rotation rates. Experimental data of Jacquin et al. [53] are also plotted.
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while in the cross-stream (y) direction, the boundaries are assumed as slip walls. The initial
velocity field is the hyperbolic–tangent profile, u=DU tanh(2y/dv

0 ), on which is superimposed
a three-dimensional large-amplitude eigenfunction disturbance obtained from linear stability
analysis [55]. In the above expression, DU is the mean streamwise velocity difference of a
mixing layer. Note that, hereafter U, V, W denote respectively the mean streamwise, normal,
spanwise velocity components instead of the previously defined contravariant velocities. For
the present study, the initial LES field is obtained by filtering the initial DNS field (generated
using Vreman’s code) for the length of the domain 50dv

0 .
Figure 8 shows the time evolution of the momentum thickness dm scaled using

d*m(t*)=
1

dm
S [dm(t*)−dm

S ], (45)

t*=
DU
dm

S (t− tS), (46)

where the superscript * denotes scaled variables and superscript S indicates scaling parameters
at the self-similarity starting point. Subtractions by dm

S and tS are implemented to assign zero
scaled time and scaled momentum thickness at the self-similarity starting point. In this study,
the self-similarity starting point is estimated by the point where the mixing layer begins to grow
linearly. The results of the 1923 DNS by Vreman et al. [56] are also plotted for comparison.
As shown, DNS and LES results appear to collapse on each other reasonably well. Figure 8
also includes the asymptotic growth rate (slope) obtained from the experiment of Bell and
Mehta [57] for a spatially evolving mixing layer. The growth rates predicted by the LES agree
very well with the experiment.

Figure 8. Time variation of the momentum thickness of temporally evolving turbulent mixing layer in scaled
co-ordinates using self-similarity starting point parameters. Results of the 1923 DNS by Vreman et al. [56] and

experimental data of Bell and Mehta [57] are also plotted.
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In Figure 9, mean (ensemble-averaged) velocity profiles U at five time levels (see figure)
during the entire period after t*=0 are plotted with self-similar scaling using the time-
dependent momentum thickness dm and the velocity difference DU. Also included are the
experimental data of Bell and Mehta [57]. The collapse of the data at the five time levels is
excellent, and the mean profile agrees very well with the data of Bell and Mehta [57].

In Figure 10, Reynolds stress profiles �u6 scaled using self-similar parameters at t*=110 are
shown together with the DNS data of Vreman et al. [56]. The overall agreement between the
DNS and the LES results is quite good. These results confirm the time accuracy of the present
solver in the simulation of the coherent structures.

4.5. Turbulent plane Couette flows

The experiments of Bech et al. [58] and Aydin and Leutheusser [59,60] were simulated. In the
simulations, only the upper wall (at y/h=1, where h is the channel half height) was moving
with a constant velocity Uw, while the lower wall (at y/h= −1) was fixed. The chosen
Reynolds number Re=Uwh/n was 2600, while the Reynolds number Ret=Uth/n based on the
wall shear velocity Ut= (n dU/dy �wall)1/2 was 81. The computational domain was 4ph×2h×
2ph in the streamwise, normal and spanwise directions, with uniform spacing in the streamwise
and spanwise directions, while in the normal direction the grid was stretched using a 6% linear
stretching in order to improve the resolution in the near-wall regions. Computational resolu-
tion was respectively around Dx+ =33.8 (here Dx+ =DxUt/n is the streamwise directional
grid width, which is normalized by the viscous scales), Dz+ =25.3 and Dy+ =1.6 (next to the
wall) with a maximum of Dy+ =9.8 in the core region. At the walls, no-slip conditions were
used and in the homogeneous (streamwise and spanwise) directions, periodic conditions were
imposed. The initial field was constructed of the laminar mean velocity profile with finite
amplitude velocity fluctuations superimposed. After about 150h/Uw, the flow reaches a
statistically steady state. Statistics were obtained by ensemble averaging for another 55h/Uw.

Figure 9. Mean streamwise velocity profiles in self-similar scaled co-ordinates obtained from LES of temporally
evolving turbulent mixing layer. Experimental data of Bell and Mehta [57] at three downstream locations are also

plotted.
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Figure 10. Comparison of time-accurate simulation results obtained from LES of temporally evolving turbulent
mixing layer. Reynolds stresses u6̃ at t*=110 are plotted in self-similar scaled co-ordinates. Results of the 1923 DNS

by Vreman et al. [56] are also plotted.

Figure 11(a) and (b) shows the mean velocity distribution. For comparison, experimental
data obtained by Aydin and Leutheusser [59] at Re=2600 and Bech et al. [58] at Re=2520,
and DNS results by Bech et al. [58] at Re=2600 are also plotted in Figure 11(a). The DNS
[58] was carried out using the 256×70×256 grid resolution. The agreement between the LES
and the experimental data is excellent, both in the wall region and in the center of the channel.
In Figure 11(b), the mean velocity is plotted in a semi-logarithm form, normalized by the
viscous scales. As shown, the velocity profile is clearly divided into a viscous sublayer, a buffer
region and a logarithm part. For comparison, the universal velocity distribution law for
smooth-wall conditions is also plotted,

U+ =A ln y+ +B, (47)

where U+ =U/Ut, y+ =yUt/n and A is the inverse of the von Kármán constant. The
constants appearing in the equation have the universal values A=2.5 and B=5.5. The LES
results align well with the straight line with only small deviations. The logarithmic region
extends to the center of the channel, a feature observed in the experiments and also captured
here.

In Figure 12, the turbulence intensities (urms, 6rms, wrms are the root-mean-square of
fluctuating velocities along the streamwise, normal and spanwise directions respectively)
obtained from LES, DNS and experiments are shown (only the moving wall part of the LES
results are presented). The LES results show overall good agreement with the DNS and
experimental data except for some deviations of the normal component in the region close to
the wall. The highest intensity is observed in the streamwise component, which has a maximum
at y+:13, whereas (unlike the plane Poiseuille flow) the other components monotonically
increase to a constant value in the center of the channel. In the present simulation, the ratio
of the velocity fluctuations 6rms/urms:0.65 is obtained (this value lies in between the value of
0.6 obtained by Aydin and Leutheusser [60] and the value of 0.67 obtained by Bech et al. [58]).
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Figure 11. (a) Mean velocity distribution and (b) mean velocity distribution in a semi-logarithm form normalized with
viscous scales obtained from turbulent plane Couette flow simulation. Experimental data of Aydin and Leutheusser
[59] and Bech et al. [58] and DNS results of Bech et al. [58] are also plotted in (a). In (b), universal velocity distribution

law for smooth wall conditions is plotted for comparison.
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Figure 12. Turbulence intensities obtained from turbulent plane Couette flow simulation. Experimental data of Aydin
and Leutheusser [60] and Bech et al. [58], and DNS results of Bech et al. [58] are also plotted.

In Figure 13, the model coefficient is plotted in a logarithm form to examine the dynamic
model behavior in the wall region. Inspection of the LDKM behavior near walls where
low-Reynolds number effects are dominant is extremely important because the LDKM is

Figure 13. Mean model coefficient distribution in a logarithm form normalized with viscous scales obtained from
turbulent plane Couette flow simulation. Some exponential damping functions are also plotted for comparison.
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formulated based on experimental observation in high-Reynolds number flows. The result
confirms the exponential decay of the dynamically determined model coefficient (and corre-
sponding reduction of the eddy viscosity) in the wall region. The constant model coefficient
(here 0.055 is used to match with the present calculation at the core region) distributions are
also plotted combined with the exponential damping function as proposed by Moin and Kim
[61]

Ct=0.055[1−exp(−y+/A+)], (48)

and by Piomelli et al. [62]

Ct=0.055[1−exp(− (y+)3/(A+)3)]1/2, (49)

with wall damping constant A+ =25. These damping functions were determined from a priori
tests (where the exact SGS quantities are calculated from exact DNS data and then the
modeled quantities are evaluated by comparison with the exact ones) developed by Clark et al.
[63]. In most cases, however, the a priori test results differ from those of a posteriori tests since,
in a priori tests, the results are obtained by completely ignoring the dynamics at the cut-off.
The present results best match with the following damping function, which is little different
from the above damping functions based on a priori tests:

Ct=0.055[1−exp(− (y+)2/(A+)2)]. (50)

4.6. Turbulent recirculating flows

The experiment of lid-driven, three-dimensional cavity flows of Prasad and Koseff [64] is
simulated. In the experiment, the three-dimensional cavity has a square cross-section (i.e. width

Figure 14. Mean velocity distributions on the centerlines in the midplane obtained from turbulent recirculating flow
simulation. LES results of Zang et al. [44] and experimental data of Prasad and Koseff [64] are also plotted.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 983–1017 (1999)



W.-W KIM AND S. MENON1012

(B)=depth (D)) and spanwise aspect ratio (SAR=L/B, where L is the cavity span) of 0.5:1.
The lid (the top wall) is moving at a velocity UB and the other walls (i.e. the upstream and
downstream walls, which are perpendicular to the streamwise (x) direction, the bottom wall
which is perpendicular to the vertical (y) direction, and the side walls, which are perpendicular
to the spanwise (z) direction), remain stationary. Hence, fluid motions are developed by the
shear of the lid, resulting in a complicated three-dimensional flow field consisting of a
stationary primary vortex and a number of complex secondary corner vortices. In these flows,
the Reynolds number is usually defined to be Re=UBB/n. Koseff and Street [65] have shown
that at Reynolds number higher than about 6000, instability occurs near the downstream
corner vortex. As the Reynolds number increases, the flow becomes increasingly turbulent near
walls, and at Reynolds numbers higher than 10000, the flow near the downstream corner
vortex becomes fully turbulent. In the present study, the Reynolds number of 10000 is
considered.

The simulation was carried out using a 64×64×32 grid, which is stretched in the
streamwise and vertical directions using 6.5% and 13.4% linear stretching respectively, but is
uniform in the spanwise direction. Small random velocity perturbations are initially prescribed
to prevent the initial kSGS field from becoming zero. The computation was first conducted with
a 323 grid. After the flow was fully developed, the coarser resolution field was interpolated
onto the finer resolution field. Simulation was then continued and statistics were collected after
a sufficient relaxation time.

The three-dimensional flow in a cubic cavity has a very complex structure. The main
structure of the flow is similar to that in a two-dimensional square cavity but is significantly

Figure 15. Turbulence intensities on the centerlines in the midplane obtained from turbulent recirculating flow
simulation. LES results of Zang et al. [44] and experimental data of Prasad and Koseff [64] are also plotted.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 983–1017 (1999)



LARGE EDDY SIMULATION OF TURBULENT FLOWS 1013

more complicated due to the side walls. In planes perpendicular to the z-direction, the flow
field consists of a primary vortex with two corner vortices at the bottom wall and a vortex at
the top upstream corner. The strengths of these vortices vary with the distance from the side
walls. In the midplane, the strengths of the vortices are strongest due to the viscous damping
at the side walls. In planes perpendicular to the x-direction, the flow field also consists of
vortices. The complete details of the observed three-dimensional flow field are not presented
here for brevity.

Figure 14 shows the computed mean streamwise (U) and vertical (V) velocity profiles on the
centerlines in the midplane. Measurements by Prasad and Koseff [64] are given for compari-
son. LES results by Zang et al. [44], which were obtained using the dynamic mixed model
(DMM) on the same grid resolution (64×64×32), are also shown. The DMM was formu-
lated by employing the mixed model (where the Smagorinsky-type eddy viscosity model is
combined with the scale similarity model to parameterize the SGS stress) as a base model and,
therefore, does not require alignment of the SGS stress tensor and the strain rate tensor. In this
dynamic procedure, the model coefficient was also calculated locally by test filtering the model
coefficient field. Zang et al. [44] have demonstrated the superiority of the DMM over the
conventional dynamic Smagorinsky model of Germano et al. [8] by showing a better agreement
of fluctuating velocity statistics with experiments in the simulation of the recirculating flows at
Re=7500. As shown in the figure, the predicted profiles by the LDKM and the DMM LES
are very close to each other and agree well with the experimental data except that both
calculations overpredict the maximum vertical velocity and the thickness of the boundary
layers on the upstream wall (x/B=0).

Figure 16. Reynolds stress profiles on the centerlines in the midplane obtained from turbulent recirculating flow
simulation. LES results of Zang et al. [44] and experimental data of Prasad and Koseff [64] are also plotted.
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The turbulence intensities (urms along the streamwise direction and 6rms along the normal
direction) on the centerlines in the midplane are shown in Figure 15. Note that this is
multiplied by a factor of 10 for a better presentation. Both calculations show a good overall
agreement with the experiment although they both underpredict the magnitude of the peaks.
Note that the LDKM computation captures the two humps in the experimental profile on the
upstream wall (at x/B:0) with reasonable accuracy, while the DMM prediction shows only
one hump.

Figure 16 displays the centerline Reynolds stress profiles on the midplane. This quantity is
magnified by a factor of 500 for a presentation purpose. Both LESs predict the profiles fairly
accurately. The LDKM gives a better agreement with the experiment than the DMM in the
profiles along the bottom half of the vertical centerline and near the downstream wall
(x/B=1), but it overpredicts the experimental data near the upstream wall.

As was experimentally observed [65] for laminar flows, Taylor–Goertler-like (TGL) vortices
are present in the downstream secondary eddy region. These vortices are mainly responsible
for momentum transfer in laminar flows. On the other hand, for turbulent flows, high-
frequency fluctuations play a dominant role in momentum transfer. These fluctuations also
destroy the coherence of the TGL vortices. The side walls and the corresponding SAR
significantly affect the cavity flows. The side walls reduce the high-frequency fluctuations by
increasing viscous damping. As the SAR reduces, these fluctuations are further suppressed.
Finally, for high-Reynolds number flows at low SAR, such as the present case, coherent
structures reappear in the form of single vortices. The existence of the single vortices is

Figure 17. Instantaneous velocity vectors in the y–z plane 0.25B from the downstream wall of turbulent recirculating
flow. Eight different instantaneous results are shown in time sequence with uniform time interval of 4 UBt/B.
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confirmed in Figure 17, which shows instantaneous velocity vectors in the y–z plane (only 1
4 of

the plane from the bottom wall is presented) at 0.25B from the downstream wall. Eight
different instantaneous results are shown in time sequence with uniform time interval of
4 UBt/B. One can see that the single vortices repeatedly generated and destroyed while they are
interacting with the side walls.

5. CONCLUSIONS

In this paper, a numerical method based on the well-known pseudo-compressibility approach
has been studied to determine its capability to accurately and efficiently solve the unsteady
incompressible Navier–Stokes equations for turbulent flows. The ability of this scheme to
carry out LES is demonstrated in this paper by incorporating a localized dynamic subgrid
model based on the transport equation for the subgrid kinetic energy. Time accurate results
were obtained by using a dual time stepping technique, which is based on the artificial
compressibility method. Adequate spatial accuracy was achieved by employing high-order-
accurate finite differences. Finally, the fully implicit primitive variable formulation is efficiently
solved by adopting various convergence–acceleration techniques, which reduce significantly
the number of subiterations. Results established the accuracy and the efficiency of the present
solver for unsteady turbulent flow simulations.
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